Global interchanges
Resurgence of the Skyscraper City

A collection of state-of-the-art, multi-disciplinary papers on tall buildings and sustainable cities

Editors: Antony Wood & David Malott
After a post-recession hiatus in tall building construction in many countries lasting several years, numerous cities in the Americas, Asia, Europe and Australia are again resurgent. From Miami to Melbourne, Bogota to Beijing, Toronto to Turin, tall projects are being proposed and built in significant number. Nowhere is this more evident than in New York, where several new urban typologies are developing simultaneously; the ultra skinny, luxury residential towers exemplified by One57 and 432 Park; the urban-regeneration clusters such as Hudson Yards and the World Trade Center site; the prefabricated high rise and other technical innovations as seen at Pacific Park; as well as numerous others. In addition, the increasing importance of both resilient infrastructure in the face of mounting climate change, as well as quality public space exemplified through projects such as the High Line, are adding to a fascinating mix.

Yet the flow of capital enabling many of these projects is complex, and shows an interconnectedness of our cities way beyond what was evident even just a short decade or two before. Developments in Sydney are as likely to be driven by forces from Shanghai as locally, Canadian pension funds are enabling several tall buildings in London, and Middle East capital seems, once again, to be everywhere. On top of this, after a decade or more of unprecedented vertical growth in Chinese cities, China is now investing in myriad urban centers around the world.

This collection of papers, originally presented at the CTBUH 2015 New York Conference, examines this dual phenomena – the motivations and mechanisms that are enabling multi-national investment scenarios, and the technical innovations that are driving new heights, forms, materials and construction techniques. The publication investigates what all this means for the skyscraper of the future – more adaptable to the sustainable and technological challenges of the age.
Please note that the following additional three publications form an addendum to these proceedings, and can be purchased separately at https://store.ctbuh.org

Asia & Australasia: A Selection of Written Works on the World’s Tall Building Forefront

The Middle East: A Selection of Written Works on Iconic Towers and Global Place-Making

The Future of Tall: A Selection of Written Works on Current Skyscraper Innovations

Contents

10 About the CTBUH
11 About the Editors
12 Introduction – New York: The Skyscraper City as Future Urban Laboratory
20 2015 Conference Skyline

Chapter 1: New New York Typologies

24 The Logic of Luxury 2.0
 Carol Willis, The Skyscraper Museum

33 The Economics of Skyscraper Construction in Manhattan: Past, Present, and Future
 Jason Barr, Rutgers University, Newark

40 Efficient Energy Production for High-demand Tenants of Tall Buildings
 Alexander Durst, The Durst Organization

48 The Complex Path to Simple Elegance: The Story of 432 Park
 Harry Macklowe, Macklowe Properties, Inc.

54 One Vanderbilt: Approving Midtown’s Tallest Office Building
 James von Klemperer, Kohn Pedersen Fox Associates

60 The New Supers: Super-Slender Towers of New York
 Silvian Marcus, WSP Group

66 The Rise of One World Trade Center
 Ahmad Rahimian & Yoram Eilon, WSP Group

72 Supertall, Super Slender Tower with a Multitude of Constraints: 220 Central Park South
 Stephen DeSimone, & Mukesh Parikh, DeSimone Consulting Engineers, PLLC

Chapter 2: Other Developments in the Americas

78 Three Points of the Residential High-Rise: Designing for Social Connectivity
 Jeanne Gang, Studio Gang Architects

86 Rags to Riches: How Chicago’s 111 West Wacker Finally Got Built
 Gary Handel & Stephen Matkovits, Handel Architects

93 Challenges of Building Brickell CityCenter: a True Mixed use Mega Project Downtown Miami
 Christophe Bilaine, Bouygues Bâtiment

101 Grade A Office Space in Mexico City: Tight Sites and Shaky Ground
 Tom Wilcock, Marc Easton, William Algaard & Tabitha Tavolaro, Arup

Chapter 3: International Developments

110 Engineering Without Engines
 Bjarke Ingels, Bjarke Ingels Group

116 Kingdom Tower / Kingdom City: History in the Making
 Mounib Hammoud, Jeddah Economic Company
Chapter 5: Social & Environmental Issues

282 Challenges and Benefits of Integrating Public Space into Tall Buildings
Rafael Viñoly, Charles Blomberg & Marcos Blanes, Rafael Viñoly Architects

288 The Fifth Façade: Designing Nature into the City
Rick Cook & Jared Gilbert, COOKFOX Architects

294 Urban Open Space - A Tower in the Park and a Park in the Tower
James Goettsch, Goettsch Partners

302 Global Best Practice for Creating Socially Engaging Tall Buildings within Their Communities
Michael George, Richard Fennell & Eric Lee, JLL

310 How New Generations, Industries and Workplace Paradigms Are Redefining the Commercial High-Rise
Timothy Johnson, NBBJ

318 The Impact of Private and Shared Open Space on Liveability in Subtropical Apartment Buildings
Rosemary Kennedy, Centre for Subtropical Design & Laurie Buys, Queensland University of Technology

324 The Vertical Master Plan
Temoor Ahmad & Neven Sidor, Grimshaw Architects; Steve Watts, alinea consulting & Adam Miller, Thornton Tomasetti

333 The Vertical Corporate Campus: Integrating Modern Workplace Models into the High-Rise Typology
John Britton & Steve Hargis, Woods Bagot

340 Global Cyclical Resurgence and Clustering of Office Skyscrapers
Sofia Dermisi, University of Washington

347 Successful Sky Life
Paul Scott, Make

355 Apartments in Skyscrapers: Innovations and Perspectives of Their Typology Development
Elena Generalova & Viktor Generalov, Samara State University of Architecture and Civil Engineering

Chapter 6: Considering the Whole Life Cycle

364 A Landmark Sustainability Program for the Empire State Building
Anthony Malkin, Empire State Realty Trust

370 United Nations Secretariat: Renovation of a Modernist Icon
Michael Adlerstein, United Nations

376 A Model Modernization: Edith Green-Wendell Wyatt Federal Building and GSA’s Mid-Century Inventory
Leslie Shepherd, General Services Administration

382 A Whole LCA of the Sustainable Aspects of Structural Systems in Tall Buildings
Dario Trabucco, CTBUH / IUAV University of Venice; Antony Wood, CTBUH; Olivier Vassart & Nicoletta Popa, ArcelorMittal

392 Development of a New Clean Demolition System for Tall Buildings
Yusuke Noguchi, Yozo Shinozaki, Hideki Ichihara & Makoto Kayashima, Taisei Corporation

399 Chicago – “The” Four Corners
Michael F. Kaufman, Goettsch Partners

407 Performance Based Optimal Design for Supertall Building Structures – A Life Cycle Methodology
Xin Zhao, Tongji University & Tongji Architectural Design (Group) Co., Ltd. & Shehong Liu, Tongji University

Chapter 7: Technological Advances

416 Breaking The Pre-fabricated Ceiling: Challenging the Limits for Modular High-Rise
Shonn Mills & Dave Grove, Ramboll Group & Matthew Egan, Modularize

426 Moving Parts: Modular Architecture in a Flat World
David Wallance, FXFOWLE; Jeffrey Raven, New York Institute of Technology & Jarny Bacchus, Iconergy
The Construction of a High-Rise Development Using Volumetric Modular Methodology
Phillip Gardiner, Irwinconsult

Virtual Building and the Progression of Digital Technology
Stuart Bull & Hernan Jerez, Ridley & Co.

The Challenges of Delivering Iconic Tall Buildings Across the World: A Global Technology Transfer
Ahmad Abdelrazaq, Samsung C&T Corporation

The Skyscraper of the Future: Integrating a Flexible Program with Energy Innovation

The New ASHRAE/CTBUH Design Guide for Tall, Megatall and Supertall Building Systems
Peter Simmonds, Building and Systems Analytics LLC

Preliminary Design of Tall Buildings Using an Artificial Neural Network
Naveed Anwar & Thaung Htut Aung, AIT-Consulting; Lila Khatiwada, Asian Institute of Technology & Jose A. Sy, Sy^2 + Associates, Inc.

Chapter 8: Structural Engineering

Structural Challenges of Twisting Towers
Vincent DeSimone, Luis Ramirez & Abdul Mohammad, DeSimone Consulting Engineers, PLLC

Securing the Vibrant Future of our Cities: Decision Making Principles for Aspirational Projects
Matthew Melrose, Daniel Sesil & Michael Hopper, Leslie E. Robertson Associates

It’s Not About the Skyline, It’s About the Base Condition
Terri Boake, University of Waterloo

Challenges and Opportunities for the Structural Design of the 123-Story Jamsil Lotte World Tower
Jong-Ho Kim, Yeonki Jung, Jidong Kim & Taejin Kim, Chang Minwoo Structural Consultants

Case Study of Structural Cracks in Irregular RC Tall Building During Construction
Taehun Ha & Sungho Lee, Daewoo E&C

Interconnectivity of Design and Construction for Complex Towers in Relation to Movement Issues
Mark Lavery, Tim Kelly & Anil Hira, BuroHappold Engineering

Use of Composite Materials for High-Rise Buildings
Samuel Chung, University of Utah & Gi Su Ju, Yeung Nam University

Non Conventional Structural Patterns for Tall Buildings: From Hexagrid to Voronoi
Elena Mele, Giovanni Montuori, Gianpaulo Perrella & Vincenzo Della Vista, University of Naples Urban Federico II

The Vienna Donau City Tower – 2000mm Flat Slabs as Outrigger Structure for Unique Landmark Building
Klaus Bollinger, Manfred Grohmann & Alexander Berger, Bollinger + Grohmann

A Uniform Vernacular for Structural Systems in Modern Tall Buildings
Andrew Bartolini & Tracy Kijewski-Correa, University of Notre Dame

Three-dimensional Exterior Bracing Systems for Tall Buildings
Rupa Garai, Mark Sarkissian, Neville Mathias & Andrew Krebs, Skidmore, Owings & Merrill

The ASeismic Design and Nonlinear Dynamic Analysis of a 350m High Braced Steel Frame
Ziguo Xu, Chongcui Ren & Congzhen Xiao, China Academy of Building Research

Chapter 9: Vertical Transport

How Transit Management Can Change the World
John Mizon, Schindler

A Next Generation Vertical Transportation System
Markus Jetter & Stefan Gerstenmeyer, ThyssenKrupp

Elevator Designs for The Kingdom Tower
James Fortune, Fortune Shepler Saling Inc.
591 Carbon-fiber Hoisting Technology
Santeri Suoranta & Jeff Montgomery, KONE

597 Enhancing Construction Efficiency and Safety with Self-climbing Elevators
Steve Gonzalez, Dennis Murphy & Johannes de Jong, KONE

603 Digitalization Enables User-centric People Flow Planning in Smart Buildings
Ani Virtanen, KONE

609 Tall Buildings and the Sabbath Elevator
David Pilzer, Ministry of the Interior, Jerusalem

Chapter 10: Façades

618 Thinking Out of the Box – Advanced Façade Design and Technology
Winfried Heusler, Schüco

624 New Developments on Stainless Steel Façades with Regard to Reflectance, Corrosion and Aesthetics
Joern Teipel, Outokumpu

630 Performance and Benefits of Architectural Coatings on 21st Century Façades
Ben Mitchell & Jean-Paul Moonen, AkzoNobel

636 Fiber Reinforced Polymer (FRP): A New Material Used in Façades of Tall Buildings
Jesús M. Cerezo Miguel & Miguel Angel Núñez Diaz, ENvolventes ARquitectonicas - ENAR

Chapter 11: Fire & Life Safety

646 Risk-Based Approach of Achieving Code Compliance in Tall Buildings: Case Study
John Devlin, Aon Fire Protection Engineering Corporation

652 Emerging Issues for Fire Safety in Tall Buildings: A View From the NFPA HRBSAC and FPRF
Kathleen Almand & Robert Solomon, National Fire Protection Association

658 Fire/Life Safety in High-Rise Buildings
James Carrigan, Brian Blicher & Laura Bennett, SYSKA Hennessy Group; Chief Ronald Spadafora, New York City Fire Department

665 Tall Buildings, Operable Facades, Wind, Life Safety – Designing for the Risks
Tom Neudorfl & Ross Murchie, Murchie Consulting

671 8 Chifley – Sustainable Structural and Fire Engineering
Andrew Johnson, Arup

678 Structural Fire Design and Approval of a 156m Tall High-End Residential Building in Abu Dhabi
Florian M. Block, Felix Summers, David Black & Tad-Song Koh, BuroHappold Engineering

Appendices

686 CTBUH Height Criteria
689 100 Tallest Buildings in the World
694 Conference Sponsors
695 Conference Committees, CTBUH Organization & Membership
698 Index by Authors
New York City has a long history as a hotspot of international business and finance, and the island of Manhattan has been practically synonymous with the word “skyscraper” for more than 100 years. It is still home to some of the world’s best-recognized skyscrapers. It will, in some sense, always be a logical location for a tall buildings conference. But in 2015, there are some particularly strong factors that make New York the ideal place to host a conference focused on the theme of “Global Interchanges.”

After the terror attacks of September 11, 2001, which affected New York in myriad ways, many people claimed that the “death of the skyscraper” as a practical building typology was imminent. Instead, skyscraper construction around the world has flourished since then.

Worldwide, the number of buildings 200 meters or taller completed from 1930 to 2001 was 282, an average of 3.9 buildings per year. From 2002 to 2015, that number was 679, for an average of 52.2 buildings per year.

In New York City, there were 56 skyscrapers of 200 meters or taller completed from 1930 to 2015. However, in the third quarter of 2015, there were 25 such buildings under construction, almost half the figure that it took 85 years to complete previously. If we look at the taller end of that spectrum, between 1930 and 2015, eight buildings in the “supertall” (300 meters or taller) category were completed during those 85 years. There are currently 14 such buildings under construction or proposed to rise by 2021.

Much attention has been and will be paid to developing economies in Asia and the Middle East, where most of those 679 buildings were built in the last decade and a half. But what is interesting about New York today is that it is particularly representative of the international flow of capital that now dominates the business – much of it from Asia and the Middle East – in a far more significant way than in decades past. As a global financial and media capital, as well as a city whose primary infrastructure dates from the 19th century, it is a laboratory for the study of trends that will affect many cities in the coming years. And that, of course, is the main topic around which the conference – and the papers that this publication contains – is focused.

Parallel Lines

As seen in the map on the right (see Figure 1), across the years there has been a consistently high density, and superlative height, concentrated in the relatively small areas in the southern tip of Manhattan, home of the Wall Street financial district, and between 34th and 59th streets, the Midtown area, revolving about the city’s two main railroad stations and the entertainment district at Times Square.

On the one hand, the traditional cores persist, with an accompanying increase in height and density. It is not a coincidence that these are also the highest-priced areas for both residential and office space. At the same time, the two cores are beginning to grow towards each other. While in 1980 there were just a few tall buildings between Canal and 14th streets, now there are several over 200 meters. Even more strikingly, there are now buildings hitting the 200-meter mark and creating mini-clusters in Brooklyn, Queens and Jersey City – though Manhattan still clearly dominates (see Figure 2).

A New Typology: the “Superslim”

The wealthy global elite have chosen New York as one of the prime locations for investment in real estate. The financial crisis of 2008–9 was based largely on high levels of debt related to securitized forms of home loans and other real estate holdings. As ironic as it may seem, the reaction of the global wealthy to the turmoil of the last crisis has been to plunge right back into real estate, but with an important distinction. This time, they’re paying largely with cash, not credit, and they are buying physical assets directly. In an increasingly politico and financially turbulent world, those with wealth to invest find that the safest investments with the best appreciation potential are real estate projects in countries with solid rule of law,
Figure 1: Tall Building Locations in New York City

The recent skyscraper boom has been characterized by an increase in luxury residential construction, an increase in slenderer aspect ratios, and substantial construction in new locations away from Lower and Midtown Manhattan, in areas once considered "fringe," such as Brooklyn, Queens, and Jersey City. The research below examines the function and location of tall buildings over 100 meters, completed or under construction, in the New York City region, with supertall buildings represented by larger dots.

In 2009, the Bank of America Tower (520 m) became the first LEED Platinum-rated skyscraper. It was recognized as the "Billionaire Block" and the tallest Manhattan skyscraper, with a courtyard allowing views towards the Hudson River.

Upon completion in 2013, VIA 57 West (142 m) will be a mixed-use hybrid between the European phenotype and the American prototype. The building was designed as a "zero waste" building.

In 2013, the Chrysler Building (319 m) was the first skyscraper to surpass the world's tallest building, surpassing The Bank of America tower in Manhattan. In 1930, the building climbed 146 stories or 319 meters using just 90 minutes, after construction was interrupted.

Upon completion in 2018, 8 Spruce Street (290 m) was the tallest residential building in North America and was recognized as the "Eighth Street Tall Building Master," Winner in the same year.

When construction of 211 West 57th Street (439 m) completes in 2019, it will challenge the boundaries of engineering with a wind-to-height ratio of almost 1:2, using 6,000 tons of concrete and a pendulum damper to achieve this feat.

In 2018, the Empire State Building (443 m) was the world's tallest building for an unprecedented 41 years, from 1931-1972, but then replaced by New York City's World Trade Center which was completed in 1998, surrounded by the 9/11 Memorial.

When the project completes in 2015, City Point Towers (115 m) will bring two residential towers to downtown Brooklyn, one affordable and the other market-rate, connecting the two towers with a retail-led mixed-use ground floor of restaurants and small shops.

New York City Region Totals

- Total Population: 8,421,602
- Total Land Area: 822.1 km²
- Population Density: 10,243.5 people/km²

Building Totals:

- Total 100 m+ buildings: 826
- Tallest building height: 541.3 m (One World Trade Center)
- Average height of 100 m+ buildings: 145.7 m

Key:

- Height: 300m+
- Function: Office, Residential, Hotel
- Mix-Used

Footnotes:

1. Figures on buildings over 100 meters is driven by the need to ensure accuracy of data, rather than suggesting that this is the "Threshold for Tall Building." Any building data are from the CTBUH Supertall Center (as of August 2015) and graphically statistics only include buildings completed or under construction at the time of research (August 2015).

2. All population data are from the US Census Bureau (as of August 2010) and statistical data is taken from the United States Census Bureau, 2010 Census.
The Logic of Luxury 2.0

Abstract

This paper recaps the “what and why” of the super-slender type and gives an abbreviated illustration of the mechanics of the “logic of luxury.” The second part of the paper considers the impact of the towers on the New York skyline, on streets and parks, and on the broader market for housing. These issues are hot topics in current critical discourse and public debate. Among architectural critics, the towers have few defenders, and civic groups and community boards have called meetings to rally against them. While there are serious considerations of how to address such issues as significant shadows on treasured public spaces such as Central Park and questions of fairness in tax policy that should be raised, in general, the rhetoric of critics needs a reality check. The histrionics that surround the frequent trope of “towers of inequality” and “towers of secrecy” require more dispassionate analysis.

Keywords: Air Rights; Slenderness; Supertall; Typology; Zoning

Over the past decade, New York has created an entirely new form in skyscraper history: the super-slender, ultra-luxury residential tower. I say “New York has created” rather than architects and engineers have invented it, because the type is shaped by the island of Manhattan’s particular conditions of place, like the specialized species of the Galapagos.

These celebrity spires are headline grabbers, in part for their “starchitect” designers, but even more for their stratospheric condo prices. In early 2015, two penthouses in One57 sold for $91 million and $100 million, and another at 432 Park Avenue was in contract for $95 million. Indeed, the $100-million number has become a benchmark, and new projects have even ventured $110-$175 million. While some condo owners will enjoy their aeries as a primary residence, many apartments are being purchased as investment properties by wealthy individuals, LLPs, and by international buyers, who will be part-time residents at most. The intense demand for New York real estate and its relative security in world markets has led one expert to dub the sky-high condos “strong-boxes in the sky.” For this reason, they have also been targets of criticism by those who view the buyers, as “the rootless superrich: Russian metals barons, Latin American tycoons, Arab sheiks and Asian billionaires.”

In a paper presented at the 2014 CTBUH Shanghai conference, and before that in the exhibition “SKY HIGH & the Logic of Luxury,” which opened at The Skyscraper Museum in October 2013, I laid out the characteristics of this new type, of which at the time there were about a dozen examples in development. All are now in some stage of construction, save for two that will still be built, but have changed slightly in shape or height (see Figure 1).

This paper recaps the “what and why” of the super-slender type and gives an abbreviated illustration of the mechanics of the “logic of luxury” detailed in my exhibition and Shanghai talk. I update additions to the list and note the next fertile fields for beanpole buildings in mid-Midtown, especially in the area of the 20s and 30s near Fifth Avenue. The second part of the paper considers the impact of the towers on the New York skyline, on streets and parks, and on the broader market for housing. These issues are hot topics in current critical discourse and public debate. Among architectural critics, the towers have few defenders, and civic groups and community boards have called meetings to rally against them. While there are serious considerations of how to address such issues as significant shadows on treasured public spaces such as Central Park and questions of fairness in tax policy that should be raised, in general, the rhetoric of critics needs a reality check.

The histrionics that surround the frequent trope of “towers of inequality” and “towers of secrecy” require more dispassionate analysis.

A New Type

What are the characteristics of the new type, and what are the conditions unique to New York that created it? Sophisticated engineering has made these spindles possible, but it is soaring condominium sale prices, in part driven by an excited international market for real estate investment, that explains their recent proliferation. These super-slim towers are expensive to build, and it took a price platform of around $3,000 psf – first established in 2004 at the Time Warner Center, then at 15 Central Park West – to make their basic economics work. Today, top prices for the first completed 57th Street towers have achieved an astonishing $9,000 to $11,000 psf, and the expectations for new projects are now generally reported in the range of $4,000 to $8,000 psf.3

The first group clustered at the southern edge of Central Park and on the wide, fashionable cross-town commercial 57th Street, nicknamed Billionaires’ Row. More than anything, their location is predicated on views of the park. Views have value, and in New York, the gold standard is Central Park. Here is the vista from the duplex-penthouse of One57 (see Figure 2). Such trophy assets are in limited supply, whether Picassos, Pollocks, or penthouses. But any apartment with a Central Park view has premium value, even an avenue or two away, or even five blocks south, as in the case of the MoMA tower. Every floor under the penthouse needs to have a view to have value, too, so slenderness becomes the way to lift all their apartments high in the sky. Other areas of the city capitalize on exceptional panoramas, especially downtown, where harbor and river views are arguably even more spectacular, even though not as expensive.

Branded design matters in the developers’ marketing. Pritzker-Prize winners Jean Nouvel, Norman Foster, Herzog & de Meuron, and Christian de Portzamparc are featured in the marketing of the towers, and Robert A.M. Stern, a traditionalist associated with high-end architecture, has been tapped for three of the super-slim towers under construction. Glass wall or picture window, though, it’s the view that sells the apartment.

The design approach of the super-slims is not stylistic, as can be seen in this compiled view of a dozen that are now under construction. The façade treatment can be a continuous glass membrane or a masonry curtain wall with punch windows. The structural system can range from internal shear walls and mega-columns, to an exterior bearing wall, to structural expressionism. Some of the towers are exceptionally tall: indeed, and the loftiest one will have a penthouse higher than the roof of One WTC. But to be clear: it’s not height that characterizes the type, it’s slenderness.

Slenderness is the design and development strategy of these towers, whether they rise to 600 feet (183 meters) or 1,500+ feet

Figure 1. Shown in the top row, left to right: One57 by Christian de Portzamparc; 111 W 57 by SHoP; 432 Park Avenue by Rafael Vinoly; Nordstrom Tower by Adrian Smith + Gordon Gill Architecture; 220 Central Park South by Robert A.M. Stern Architects; 520 Park Avenue by Robert A.M. Stern Architects; 53 West 53rd by Ateliers Jean Nouvel; 56 Leonard by Herzog & de Meuron Architects; 30 Park Place by Robert A.M. Stern; 50 West Street by JAHN; 100 East 53rd Street by Foster + Partners; 45 East 22nd Street by Kohn Pederson Fox Associates (Source: The Skyscraper Museum from images provided by Christian De Portzamparc; SHoP Architects; CIM Group & Macklowe Properties; YIMBY; RAMSA, rendering by Neoscape; Zeckendorf Development LLC and Seventh Art; NYC Department of City Planning; Alexico Group; dBox)

Figure 2. View of Central Park from penthouse of One57 (Source: The Skyscraper Museum)
Social connectivity is especially important given the changing demographic of city dwellers. Millennials, the current generation moving to cities, are highly social and desire social opportunities that are both virtual and real. Comfortable with sharing, this generation is capable of transforming many established aspects of urban living. With information technology in the palm of our hands, in many ways the transformation is well underway. Indeed, all ages desire social interaction; it’s part of being human. Tall buildings need to respond to these desires by becoming social connectors themselves.

It may seem that tall buildings are fully accepted today. Their construction in place of lower-density development has become the status quo. One reason for this is that tall buildings are resoundingly appreciated and celebrated for their ability to address issues of identity and iconography in cities. Yet the original critique about tall buildings was never aimed at their iconic potential; rather it was squarely focused on their perceived inability to contribute to the social well-being of the city. On this point there remains doubt about the tall building type, and the concern of early critics that tall buildings may have negative consequences on the social fabric, even “adverse effects on mental and social health,” seems to linger. Research conducted in a range of disciplines, from sociology to economics to urban planning, continues to critique tall buildings for isolating people from each other, negatively impacting the ground-level civic space with shadows and other environmental problems, and blocking connections between spaces of the city due to impenetrable large podia.

Creating social space was a driving factor in the design of Studio Gang’s Aqua Tower, completed in 2009. The research that was begun for that project has developed into architectural strategies for tall buildings that continue to grow within our practice, contributing to a morphology that is continually tracked and updated. We have applied this research to both real and hypothetical projects to date. By sharing these strategies, we hope to offer tools that architects can deploy to make tall buildings more socially connected and responsive to the urban environments in which they are built – and in doing so address the public’s ongoing concerns about the tall building typology and respond to our uniquely social generation’s desires for the kinds of cities we want to live in.

In this paper we posit three simple points for residential high-rise design, developed through our design research, that specifically address the need for social connectivity, strategies that

Abstract

In this paper we discuss the terms “exo-spatial design,” “solar carving,” and “bridging” as strategies for creating more socially connective tall buildings. As a typology, high-rise residential buildings have a unique set of challenges to becoming fully activated urban participants in the cities in which they are located. While there is a general recognition and appreciation that tall buildings provide identity to a city, there is often criticism of how they relate to their surroundings. Critics have posited that tall buildings are insular and foreboding by their very nature. This paper explores several design avenues for architects to consider in order to improve the social aspect of tall buildings. As all cities become taller and denser to accommodate growth, the need to design social space in, on, and around tall buildings must be continually examined if we are to have cohesive urban fabric that supports communities.

Keywords: Connectivity, Energy Efficiency, Passive Design, Social Interaction, Urban Design, Vertical Urbanism

we have termed: "exo-spatial design," "solar carving," and "bridging." The Aqua Tower contains seeds of all three strategies in nascent form, as exhibited in its large social balconies on the exterior, floor slabs that are shaped or carved by solar and other environmental conditions, and spanning elements in its podium that allow it to bridge a complex ground condition. We examine how these initial ideas have been implemented in a variety of ways in our current work (see Figure 1).

Exo-Spatial

Exploring the Idea of Outdoor Living and Its Potential Social Dimensions

An exo-spatial building strives to be socially vibrant on its entire exterior surface. It reinterprets architectural elements such as balconies and roof gardens into the urban equivalent of a front porch or a back yard—social spaces that may occur more typically when living closer to the ground. How can something as ordinary as a balcony become something more social?

The exo-spatial concept is based on extending the threshold of the interior to the outdoors and creating a social space within that threshold. First developed for the Aqua Tower, it has been further explored in Studio Gang projects such as City Hyde Park and the Garden in the Machine.

Aqua Tower, Chicago

“What’s missing in tall buildings?” For the design of the Aqua Tower, we began by surveying our own office and colleagues and found the overwhelming response to this question was: outdoor space. As the design developed, we found that extensive outdoor space on the exterior surface of the building could provide more than a private amenity for the individual apartment; it could act as a vertical community where residents could see one another and informally interact. The physical manifestation of exo-spatial design, Aqua’s large undulating balconies, which vary in shape ever so slightly from floor to floor over the height of the building, are also the tower’s most recognizable feature. The terraces seamlessly extend the interior to the outdoors, creating spaces that imbue high-rise living with the character of a neighborhood. From the living room, the balconies act as a visual extension of space from inside to outside, but stepping outside offers an expansive urban experience. The balconies offer oblique visual connections between neighboring units, allowing for informal ties to form between people, as well as vistas to landmarks within the fabric of downtown, strengthening a sense of place and identity. In doing so, the building challenges the notion of the tall building as a gated community and prioritizes social connection. Semi-private spaces like Aqua’s terraces serve as “a type of social network,” becoming the locus not only of individual identity, made possible by residents’ unique customizations, but of community as well, allowing for the crucial interactions that occur as the result of more public spaces.

City Hyde Park, Chicago

With City Hyde Park, slated for completion in 2015, we challenged ourselves to advance the lively social interactions we explored in Aqua’s design while also improving energy efficiency. City Hyde Park advances our exo-spatial design concept and simultaneously proves that outdoor space does not have to compromise environmental performance in cold climates. By minimizing the area where the balcony touches the slab, taking gravity loads directly to the ground, and inserting a thermal break, the conductivity of the slab is likewise minimized and performance is improved.

Located at a busy commercial intersection near Lake Michigan and adjacent to a commuter rail stop, City Hyde Park is a 500,000

Engineering Without Engines

Abstract

With the rise of technological solutions, the practice of architecture is often divorced from the cultural, social, and environmental contexts where we build. Buildings have become closed systems, connected to life-support machinery that compensates for the design principles we have forgotten over time. This is particularly true of tall buildings, especially since the rise of the International Style in the middle of the 20th Century. We have much to “re-learn” from vernacular architecture in the regions where we work, but we must also put our latest technological advances to work in realizing these principles. This paper articulates a vision for a world in which tall buildings can be “engineered without engines.” It is a call for architects to return to a more central, yet more collaborative role with engineers, rather than let the content of their buildings be driven by engineering standards’ conflict with arbitrary shapes.

Keywords: Architecture, Design Process, Form, Climate, Context, Integrated Design

Architecture is the art and science of accommodating the lives we want to live. It sets the stage for our lives. It is the craft of designing and building the world that we want to inhabit. Our cities and buildings aren’t givens—they are the way they are because that is as far as we have gotten to date. They are the best efforts of our ancestors and fellow planetizens, and if they have shortcomings, it is up to us to continue that effort. We must pick up where they left off and create the world we want to see for ourselves and our children.

Architecture is much more than designing pretty facades or expressive sculptures. It is the craft of designing and building man-made ecosystems, through which we channel not only the flow of people, but also the flow of resources through our cities and buildings.

We are never starting from scratch. We have a planet to begin with—with climates and landscapes, biomass and minerals. From those conditions we add and subtract, adapt and evolve, modify and manipulate matter to achieve conditions even more conducive to human life.

What are the forces that shape the world around us? What are the bits of information that inform our design decisions? How can we use constraints—as design criteria—and in a Zen-like way—turn the resistance we meet into the driving force of our design? Architecture—like storytelling—strives through conflict. The greater the obstacle, the more engaging the design that overcomes it. So what conditions can inform our work?

Figure 1. The proposed Signature Tower in Kuala Lumpur challenges the universal ideas of the skyscraper (Source: BIG)
First, there’s our climate and our landscape.

Bernard Rudofsky’s show at the MoMA “Architecture without Architects – An Introduction to Non-Pedigreed Architecture” highlighted the fact – mostly from an aesthetic point of view – that with the rise of the International Style of Modernism, buildings had started to look the same everywhere. The name “International Style” obviously suggests this, but the implications are troubling, and they extend beyond aesthetics.

Let us take a moment to discuss the origins of this and its perversions. Mies van der Rohe made some amazing typological innovations. He stripped the Manhattan high-rise down to its bare bones. He was good at distilling an idea into its pure essence. He said, “If it’s about the view, why don’t we make the entire wall the view? If it’s about a big, open, inviting lobby, why don’t we just make it completely empty and transparent?” So he was taking ideas to the essential extreme.

Traveling around North America, one realizes that van der Rohe did the same high-rise 10 or 20 times. He was so obsessed with perfection that he got stuck with what he believed to be the perfect solution, and then he simply repeated it.

Herein lies the problem of van der Rohe’s idea of a universal application of the ideal solution. One misses the problems and potentials of the fact that there are different contexts, different cultures, economies, climates, landscapes and programs. Each parameter changes the equation and distorts the solution away from the universal, perfect solution towards the set of locally optimized solutions. We need to be much more interested in exploring the potential of these differences, rather than always repeating a certain universal ideal (see Figure 1).

The homogenized International Style neglected the usual environmental design responses. Adaptations to local environmental conditions developed over centuries were being replaced by giant mechanical systems. Essentially the buildings were now on life support – supplemented by air conditioning, central heating, and mechanical ventilation. Machines replaced the thicknesses of walls, solar orientation of the buildings, proximity to windows, the operability of windows. Electric lights even made us independent of daylight. Suddenly a building was not “performing” anymore; it was reduced to a mere container of space – a big blank box, tube-fed by a whole arsenal of machines. Building services are essentially a mechanical compensation for the fact that a building is bad at what it is designed for – human inhabitation.

One of the things that has inspired us is looking at the role that architects can play in this conditioning. Rather than simply outsourcing it to engineers or product manufacturers, we should investigate if architectural design can once again play a real active role in the environmental performance of the building.

That kind of thinking is often missing, particularly in tall-building design. The term “perfume-bottle architecture” comes from the fact that for some architects, it seems like the shape of the building and the content of the building are two entirely separate ideas. In North America, this is exacerbated by the way the profession is organized, in that one architect may design the structure and the envelope of the building, and another architect does the interiors. Whereas in Europe, the distinction between the inside and the outside design is not common. We’ve been fortunate that in Vancouver, Miami and New York, we were commissioned to design the interiors as well as the exteriors (see Figure 2).

There is a whole series of architectural styles that are neither academic, nor aesthetic, but rather are purely empirical, refined through years of trial and error.

Mediterranean Greek villages, with all of their surfaces coated in white to reflect heat – and flat roofs to ascend for the enjoyment of cool evening breezes…

Igloos, designed using the high insulating properties of packed snow to create a minimum surface area of thermal exposure within a maximum contained volume…

Chinese courtyard buildings in flatlands, where one descends down into the courtyards to find calm from the turbulent winds above…

In Yemen, a field of thin chimneys rises above the city with steep-cut slopes, capped with large flat wind funnels, all facing the prevailing winds, so as naturally ventilate the six-story buildings below without any moving parts. These examples show us ways to achieve an ultimate symbiosis between architecture and its surroundings.
Index by Authors

A
- Abdelrazaq, Ahmad; 449
- Adi, Prasetyo; 204
- Ahmad, Temoor; 324
- Alderstein, Michael; 370
- Algaard, William; 101
- Almand, Kathleen; 652
- Anlar, Fatin; 160
- Anwar, Naveed; 469
- Ascher, Kate; 224
- Aung, Thaung Htut; 469

B
- Bacchus, Jamy; 426
- Barr, Jason; 33
- Bartolini, Andrew; 548
- Bennett, Laura; 658
- Berger, Alexander; 540
- Besjak, Charles; 130
- Blaine, Christophe; 93
- Black, David; 678
- Blanes, Marcos; 282
- Blicher, Brian; 658
- Block, Florian M.; 678
- Blomberg, Charles; 282
- Boake, Terri; 494
- Bollinger, Klaus; 540
- Britton, John; 333
- Bull, Stuart; 442
- Buys, Laurie; 318

C
- Carrigan, James; 658
- Cashen, Daniel; 130
- Chan, Stanford; 456
- Cheung, Penny; 182
- Chung, Samuel; 524
- Cook, Rick; 288
- Cotter, Robert; 218
- Cousins, Fiona; 230

D
- Danisworo, Mohammad; 204
- de Jong, Johannes; 597
- Dermsi, Sofia; 340
- DeSimone, Stephen; 72, 160
- DeSimone, Vincent; 478
- Devlin, John; 646
- Díaz, Miguel Angel Núñez; 636
- Dravid, Girish; 196
- Durst, Alexander; 40
- Easton, Marc; 101
- Egan, Matthew; 416
- Elion, Yoram; 66
- Eu, Sung Mo; 190
- Fennell, Richard; 302
- Fleischmann, Moritz; 266
- Ford, Tom; 238
- Fortune, James; 584
- Gang, Jeanne; 78
- Garai, Rupa; 555
- Gardiner, Phillip; 434
- Generalova, Elena; 355
- Generalov, Viktor; 355
- George, Michael; 302
- Gerstenmeyer, Stefan; 576
- Gilbert, Jared; 288
- Gilchrist, Russell; 238
- Goettsh, James; 294
- Gonzalez, Steve; 597
- Goodwin, Robert; 252
- Grohmann, Manfred; 540
- Grove, Dave; 416
- Hammoud, Mounib; 116
- Handel, Gary; 86
- Hannum, John; 456
- Hargis, Steve; 333
- Ha, Taehun; 510
- Henn, Martin; 266
- Heusler, Winfried; 618
- Hira, Anil; 517
- Hopper, Michael; 485

I
- Ichihara, Hideki; 392
- Ingels, Bjarke; 110

J
- Jeong, Young Kyoong; 190
- Jerez, Herman; 442
- Jetter, Markus; 576
- Johnson, Andrew; 671
- Kaplan, Dan; 160
- Kaufman, Michael F.; 399
- Kayashima, Makoto; 392
- Kelly, Tim; 517
- Kennedy, Rosemary; 318
- Khatriwada, Lila; 469
- Kijewski-Correa, Tracy; 548
- Kim, Jidong; 502
- Kim, Jong-Ho; 502
- Kim, Taejin; 502
- Koh, Tad-Song; 678
- Koop, Colin; 130
- Krebs, Andrew; 555
- Krummeck, Stefan; 258
- Kwok, Michael; 182

K
- Lavery, Mark; 517
- Lee, Eric; 302
- Lee, Sungho; 510
- Liu, Shehong; 407
- Logan, William; 456
- Luong, Andrew; 182
- Luo, Yuping; 130
- Macklowe, Harry; 48
- MacLeod, Benjamin; 258
- Malkin, Anthony; 364
- Marcus, Silvian; 60
- Master, Abbas; 196
- Mathias, Neville; 555
- Matkovitz, Stephen; 86
- McCafferty, Patrick; 182
- Mele, Elena; 532
- Melrose, Matthew; 485
- Miguel, Jesús M. Cerez; 636
- Miller, Adam; 324
- Mills, Shonn; 416
- Mitchell, Ben; 630
- Mizon, John; 570
- Mohammad, Abdul; 478
- Mola, Elena; 152
- Mola, Franco; 152
- Montgomery, Jeff; 591
- Montuori, Giovanni Maria; 532
Moonen, Jean-Paul; 630
Murchie, Ross; 665
Murphy, Dennis; 597

N
Neudorfl, Tom; 665
Noguchi, Yusuke; 392

P
Palafox, Felino; 272
Parakh, James; 212
Parikh, Mukesh; 72
Partridge, David; 146
Pellegrini, Laura Maria; 152
Perrella, Gianpaolo; 532
Pilzer, David; 609
Popa, Nicoletta; 382

R
Rahimian, Ahmad; 66
Ramirez, Luis; 478
Raven, Jeffrey; 426
Reinke, Stephan; 246
Ren, Chongcui; 561
Roh, Jin H.; 190

S
Sarkisian, Mark; 555
Sconocchia, Giuseppe Galassi; 152
Scott, Paul; 347
Sellar, Irvine; 138
Sesil, Daniel; 485
Shepherd, Leslie; 376
Shinozaki, Yozo; 392
Shuvalova, Elena; 168
Sidor, Neven; 324
Sim, Hyungsup; 190
Simmonds, Peter; 463
Solomon, Robert; 652
Spadafora, Ronald; 658
Summers, Felix; 678
Suoranta, Santeri; 591
Sy, Jose A.; 469

T
Tavolaro, Tabitha; 101
Techakraisri, Sorapoj; 122
Teipel, Joern; 624
Trabucco, Dario; 382
Tsang, Wai Ming; 176

U
Uffer, Sabina; 224

V
Vaish, Marissa; 456
Vassart, Olivier; 382
Vinoly, Rafael; 282
Virtanen, Ari; 603
Vista, Vincenzo Della; 532
von Klemperer, James; 54

W
Wallance, David; 426
Watts, Steve; 324
Wenger, Jeff; 218
Wilcock, Tom; 101
Willis, Carol; 24
Wood, Antony; 382

X
Xiao, Congzhen; 561
Xu, Ziguo; 561

Z
Zhao, Xin; 407
After a post-recession hiatus in tall building construction in many countries lasting several years, numerous cities in the Americas, Asia, Europe and Australia are again resurgent. From Miami to Melbourne, Bogota to Beijing, Toronto to Turin, tall projects are being proposed and built in significant number. Nowhere is this more evident than in New York, where several new urban typologies are developing simultaneously: the ultra skinny, luxury residential towers exemplified by One57 and 432 Park; the urban-regeneration clusters such as Hudson Yards and the World Trade Center site; the prefabricated high rise and other technical innovations as seen at Pacific Park; as well as numerous others. In addition, the increasing importance of both resilient infrastructure in the face of mounting climate change, as well as quality public space exemplified through projects such as the High Line, are adding to a fascinating mix.

Yet the flow of capital enabling many of these projects is complex, and shows an interconnectedness of our cities way beyond what was evident even just a short decade or two before. Developments in Sydney are as likely to be driven by forces from Shanghai as locally, Canadian pension funds are enabling several tall buildings in London, and Middle East capital seems, once again, to be everywhere. On top of this, after a decade or more of unprecedented vertical growth in Chinese cities, China is now investing in myriad urban centers around the world.

This collection of papers, originally presented at the CTBUH 2015 New York Conference, examines this dual phenomena – the motivations and mechanisms that are enabling multi-national investment scenarios, and the technical innovations that are driving new heights, forms, materials and construction techniques. The publication investigates what all this means for the skyscraper of the future – more adaptable to the sustainable and technological challenges of the age.